Low serum ferroxidase I activity is associated with mortality in heart failure and related to both peroxynitrite-induced cysteine oxidation and tyrosine nitration of ceruloplasmin.
نویسندگان
چکیده
RATIONALE Ceruloplasmin antioxidant function is mainly related to its ferroxidase I (FeOxI) activity, which influences iron-dependent oxidative and nitrosative radical species generation. Peroxynitrite, whose production is increased in heart failure (HF), can affect ceruloplasmin antioxidant function through amino acid modification. OBJECTIVE We investigated the relationship between FeOxI and ceruloplasmin tyrosine and cysteine modification and explored in a cohort of patients with HF the potential clinical relevance of serum FeOxI. METHODS AND RESULTS In patients with chronic HF (n=96, 76 ± 9 years; New York Heart Association class, 2.9 ± 0.8) and age-matched controls (n=35), serum FeOxI, FeOxII, ceruloplasmin, nitrotyrosine-bound ceruloplasmin, B-type natriuretic peptide, norepinephrine, and high-sensitivity C-reactive protein were measured, and the patients were followed up for 24 months. Ceruloplasmin, B-type natriuretic peptide, norepinephrine, and high-sensitivity C-reactive protein were increased in HF versus controls. FeOxI was decreased in HF (-20%) and inversely related to nitrotyrosine-bound ceruloplasmin (r, -0.305; P=0.003). In HF, FeOxI lower tertile had a mortality rate doubled compared with middle-higher tertiles. FeOxI emerged as a mortality predictor (hazard ratio, 2.95; 95% confidence intervals [1.29-6.75]; P=0.011) after adjustment for age, sex, hypertension, smoking, sodium level, estimated glomerular filtration rate, and high-sensitivity C-reactive protein. In experimental settings, peroxynitrite incubation of serum samples and isolated purified ceruloplasmin reduced FeOxI activity while increasing ceruloplasmin tyrosine nitration and cysteine thiol oxidation. Reduced glutathione prevented peroxynitrite-induced FeOxI drop, tyrosine nitration, and cysteine oxidation; flavonoid(-)-epicatechin, which prevented ceruloplasmin tyrosine nitration but not cysteine oxidation, partially impeded peroxynitrite-induced FeOxI drop. CONCLUSIONS Reduced activity of serum FeOxI is associated with ceruloplasmin nitration and reduced survival in patients with HF. Both ceruloplasmin tyrosine nitration and cysteine thiol oxidation may be operant in vivo in peroxynitrite-induced FeOxI activity inhibition.
منابع مشابه
Myeloperoxidase-Related Chlorination Activity Is Positively Associated with Circulating Ceruloplasmin in Chronic Heart Failure Patients: Relationship with Neurohormonal, Inflammatory, and Nutritional Parameters
RATIONALE Heart failure (HF) is accompanied by the development of an imbalance between oxygen- and nitric oxide-derived free radical production leading to protein nitration. Both chlorinating and peroxidase cycle of Myeloperoxidase (MPO) contribute to oxidative and nitrosative stress and are involved in tyrosine nitration of protein. Ceruloplasmin (Cp) has antioxidant function through its ferro...
متن کاملInhibition of acetylcholine synthesis and tyrosine nitration induced by peroxynitrite are differentially prevented by antioxidants.
Evidence of an overload of reactive oxygen species and peroxynitrite, a derivative of nitric oxide, in sporadic amyotrophic lateral sclerosis suggests that peroxynitrite could impair cholinergic functions. Because of the impossibility of obtaining synaptosomes from vertebrate neuromuscular junctions, we used cholinergic synaptosomes purified from Torpedo marmorata electroneurons to characterize...
متن کاملThe possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum.
The oxidation of Fe(I1) by serum was studied at pH 7.35 and at various oxygen concentrations which approach the physiological conditions of human serum. The nonenzymic oxidation of Fe(I1) was estimated to be insufficient to account for a rate of Fe(III)-transferrin formation necessary to provide an adequate iron supply for hemoglobin and other biosyntheses if Fe(I1) is a relevant source of seru...
متن کاملProtein Tyrosine Nitration and Thiol Oxidation by Peroxynitrite—Strategies to Prevent These Oxidative Modifications
The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase an...
متن کاملPeroxynitrite inactivates tryptophan hydroxylase via sulfhydryl oxidation. Coincident nitration of enzyme tyrosyl residues has minimal impact on catalytic activity.
Tryptophan hydroxylase, the initial and rate-limiting enzyme in serotonin biosynthesis, is inactivated by peroxynitrite in a concentration-dependent manner. This effect is prevented by molecules that react directly with peroxynitrite such as dithiothreitol, cysteine, glutathione, methionine, tryptophan, and uric acid but not by scavengers of superoxide (superoxide dismutase), hydroxyl radical (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 114 11 شماره
صفحات -
تاریخ انتشار 2014